
Computer-Aided Design 133 (2021) 102986

n
p
p
F
u
b
t
r
a
l
o
o
f
m
b

h
0

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Multi-Axis Support-Free Printing of Freeform Parts with Lattice Infill
Structures✩

Yamin Li, Kai Tang ∗, Dong He, Xiangyu Wang
Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:
Received 16 June 2020
Received in revised form 17 October 2020
Accepted 12 December 2020

Keywords:
Additive manufacturing
Support-free
Self-supporting, lattice infill
Multi-axis printing, FDM

a b s t r a c t

In additive manufacturing, infill structures are commonly used to reduce the weight and cost of a
solid part. Currently, most infill structure generation methods are based on the conventional 2.5-axis
printing configuration, which, although able to satisfy the self-supporting condition on the infills, suffer
from the well-known stair-case effect on the finished surface and the need of extensive support for
overhang features. In this paper, based on the emerging continuous multi-axis printing configuration,
we present a new lattice infill structure generation algorithm, which is able to achieve the self-
supporting condition for both the infills and the boundary surface of the part. The algorithm critically
relies on the use of three mutually orthogonal geodesic distance fields that are embedded in the
tetrahedral mesh of the solid model. The intersection between the iso-geodesic distance surfaces
of these three geodesic distance fields naturally forms the desired lattice of infill structure, while
the density of the infills can be conveniently controlled by adjusting the iso-values. The lattice infill
pattern in each curved slicing layer is trimmed to conform to an Eulerian graph so to generate a
continuous printing path, which can effectively reduce the retractions of the nozzle during the printing
process. In addition, to cater to the collision-free requirement and to improve the printing efficiency,
we also propose a printing sequence optimization algorithm for determining a collision-free order of
printing of the connected lattice infills, which seeks to reduce the air-move length of the nozzle. Ample
experiments in both computer simulation and physical printing are performed, and the results give a
preliminary confirmation of the advantages of our methodology.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Additive manufacturing (AM) technologies have brought a sig-
ificant change to manufacturing, making it possible to fabricate
arts with extremely complex features that are otherwise im-
ossible to be produced by traditional means such as machining.
used deposition modelling (FDM) is one of the most commonly-
sed types of AM, owing to its low cost and simplicity, which
uilds a part layer by layer by extruding a molten filament [1] on
he layers. Most FDM systems are of the 2.5-axis printing configu-
ation, namely, the geometric model of the part is first sliced into
series of parallel planar layers and then the material is deposited
ayer by layer along a fixed direction (Z+). The biggest limitation
f this configuration is that support structure is usually needed in
rder to prevent the collapse of material when printing overhang
eatures, which not only causes the extra cost of the printing
aterial and printing time but also subjects the surface of the
uilt part to potential damage when the support is being removed
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eventually. Moreover, due to the nature of parallel slicing, parts
built under 2.5-axis configuration are inherently susceptible to
the staircase effect and the consequent poor surface quality.

Infill structures are commonly used in AM to reduce the
weight and cost of a solid part. One critical requirement for the
design of infill structures is that they must be self-supporting,
as it would be extremely difficult or even impossible to remove
any interior support after the part is printed. Dong et al. [2] and
Tamburrino et al. [3] reviewed the properties and the modelling
processes of lattice infill structures in additive manufacturing. Wu
et al. [4] used the idea of adaptive rhombic grids to generate
infill structures to satisfy the manufacturing requirements on
both the overhang-angle and wall-thickness, and the generated
infill structures exhibit improved properties of both high stiffness
and static stability. Similarly, Lee et al. [5] proposed a method for
generating support-free elliptic voids by constructing a Voronoi
diagram of ellipses, which aims at not only avoiding the need of
interior supports but also achieving better mechanical properties
than Wu’s rhombic infill structures [4]. Kuipers et al. [6] proposed
a new self-supporting infill structure called CrossFill, which has
the advantage that the extrusion printing paths are continuous
and free of self-overlap. Wang et al. [7] presented a support-
free hollowing algorithm based on the offsetting operation which
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an reduce more volume of material than Wu’s method [4].
ang et al. [8] also proposed a hollow-to-fill algorithm based
n the voxel model to guarantee the support-free property of
nner surfaces for shape optimization. Similar voxel model-based
ollowing methods can also be found in [9–12]. Gupta and
rishnamoorthy [13] developed a framework that can guarantee
sparse infill pattern according to a given arbitrary polygonal
esh; in addition, it guarantees the existence of a single, con-

inuous and crossover-free tool path in each layer by using a
ovel Euler transformation. Additionally, there are also some infill
tructure generation methods based on topology optimization
14–16] with self-supporting as a constraint. Notwithstanding the
ichness, these infill structure generation methods are all based
n the conventional 2.5-axis printing configuration, which means
hat, although the generated infill structures in the interior of the
art are self-supporting, exterior supports are still required when
rinting a surface of overhang features.
To reduce the exterior support, many approaches have been

roposed, although they are still limited to the 2.5-axis printing
onfiguration. Hu et al. [17] proposed an orientation-driven shape
ptimizer which could considerably slim down the support by
inding an optimal building direction. Zhou et al. [18] developed
tree-like support structure generation method based on the

indenmayer system and an Octree. Vanek et al. [19] presented
n optimization framework for the reduction of support, which
ries to minimize the support material while providing sufficient
upport. Tricard et al. [20] proposed an interior rib-like support
tructure to build hollowed parts. Nevertheless, although in cer-
ain cases the support volume could be significantly reduced by
hese methods, they are not able to fully eliminate the need of
xterior support, simply due to the nature of 2.5-axis printing
onfiguration.
As a viable solution to the shortcomings of 2.5-axis printing

onfiguration, the 3+2-axis configuration allows a part to be
rinted with a finite number of different building directions,
lthough for each building direction the printing configuration
s still of the 2.5-axis type. Gao et al. [21] proposed a method
o properly decompose a model into several sub-parts, which
an then be printed consistently with different building direc-
ions with a much reduced amount of supporting material. Wei
t al. [22] developed a skeleton-based algorithm for partitioning
model into the least number of sub-parts, which can (at least

n theory) totally eliminate the need of support. Wu et al. [23]
ave a support-effective volume decomposition algorithm that
an minimize the surface area of regions with large overhangs.
ased on the 3+2-axis configuration, Bhatt et al. [24] developed
n algorithm to print accurate thin-shell parts with no support.
imilar research can also be found in [25–31]. Nonetheless, all
hese improvements are based on the 3+2-axis configuration,
hich become less effective for freeform parts with complex

eatures and thus lack generality.
The emerging continuous multi-axis printing configuration is

erhaps the ultimate solution to the support-free requirement.
asically, on a multi-axis printing platform, one can not only slice
he model into non-planar (i.e., curved) layers, but also continu-
usly adjust the nozzle orientation to align with the layer normal,
o to restrict the overhang angle below a threshold, thus achiev-
ng a total support-free printing (at least in theory). Dai et al. [32]
roposed a curved layer decomposition method for multi-axis
rinting based on the voxel model. This method is considered
o be general for printing freeform parts; however, it demands
huge computational cost due to the nature of voxelization.
u et al. [33] recently presented a curved layer-decomposition
lgorithm, which first establishes a geodesic distance field on the
art surface, then generates a set of closed iso-geodesic contours

n the part surface, and finally fills these 3D contours into curved b

2

layers. However, one critical problem with their algorithm is that,
as the curved layers are obtained by hole-filling the boundary
loops, they are easy to intersect with each other when the slicing
distance is small. Xu’s method uses the geodesic distance field
as an intrinsic indicator to slice the part, which shows good
generality and robustness. In terms of the calculation of geodesic
field, Crane et al. [34] proposed an efficient and robust method for
computing geodesics in a Riemannian manifold; they noticed that
the geodesic distance between any pair of points on a Riemannian
manifold can be recovered by constructing the heat diffusion field
from either point of them, as the gradient of the heat field is
parallel to that of geodesics. Their method mainly includes three
steps, first the temperature scalar field of the given domain can be
obtained by solving the heat flow equation u̇ = ∆u discretely for
a fixed time t; then the gradient vector field X can be calculated
by X = −∇u/|∇u|; finally the geodesic distance field can be de-
ermined by solving the Poisson equation ∆φ = ∇·X . Crane’s heat
ethod can be applied on a variety of data structures such as tri-
ngular meshes, tetrahedral meshes, voxel grids and point clouds.
acilitated by a geodesic distance field embedded on the solid
art, the part can be decomposed into curved layers [35,36] that
ight be suitable for multi-axis printing. Additionally, Etienne
t al. [37] proposed a curved layer generation method for printing
arts on three-axis printers, which can effectively eliminate the
taircase effect. Their method first uses planar planes to slice a
eformed model of the part and then maps the planar layers back
o the original model to obtain the corresponding curved layers.

Although the above curved-layer decomposition methods
ased on continuous multi-axis printing configuration can sig-
ificantly reduce or even, in most cases, completely eliminate
he need of exterior support, they are all for printing the entire
olid volume. Actually, to the best of our knowledge, due to the
ewness of continuous multi-axis printing configuration, so far
here has no published reports on how to automatically design
n infill structure and generate a printing path for an arbitrary
reeform solid such that no support will be required for either
he boundary or the infill structure. In this paper, under the
ontinuous multi-axis printing configuration, we present a new
ethodology for automatically generating an infill structure as
ell as the accompanying multi-axis printing path for an arbi-
rary freeform part, which will be support-free for printing both
he infill structure and the boundary surface of the part. The
utline of the methodology is given next while its details will be
resented in the ensuing sections.
First, a new geodesic distance field (GDF) based curved-layer

licing algorithm is proposed. Rather than using only the iso-
eodesic contours on the part’s surface as the boundary loops of
he curved layers as did in [33], we compute the geodesic distance
ield directly inside the 3D volume of the part, which provides
more natural volume decomposition. Referring to Fig. 1, for a

hree-dimensional manifold (i.e., a watertight a solid), from the
ase of the part, we can define locally parallel geodesics that
ill fill the entire manifold, and the iso-geodesic distance surfaces
IGDSs) of this 3D field naturally decompose the whole part. Let
s call this geodesic distance field the γ -GDF. Because IGDSs are
lways perpendicular to the geodesics, the overhang angle at the
oundary of any IGDS of γ -GDF will be significantly reduced,
aking it possible to print the part without any support. As

GDSs never intersect each other, the tangling issue of potential
ntersections between close-by curved layers as filled contours is
ow conveniently averted.
Then, based on γ -GDF, a new lattice infill structure generation

ethod is proposed, which will enable support-free printing for
oth the part boundary surface and the generated infills. As-
uming that the printing always begins from the base (i.e., the

ottom), a series of IGDSs of γ -GDF, called γ -IGDSs (as shown
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Fig. 1. Illustration of the infill structure generation method: (a) the three geodesic distance fields; (b) the lattice structure formed by the intersection of the three
clusters of IGDSs.
in Fig. 1(b)), can be constructed which naturally decompose the
entire part. These IGDSs are exactly the sought curved layers
on which lattice infills will be planned. To generate the interior
lattice infills, two other types of GDF, called α-GDF and β-GDF
espectively, are established, which satisfy the desirable orthog-
nal property – the geodesics of the three fields are mutually
rthogonal to each other. Next, the other two clusters of IGDSs
i.e., the α-IGDSs and the β–IGDSs – are generated, and the

hree clusters of IGDSs (i.e., the γ -IGDSs, α-IGDSs, and β-IGDSs)
re orthogonal to each other, as illustrated in Fig. 1(b). For each
-IGDS, a lattice infill pattern is formed by the intersection lines
isolines) between this γ -IGDS and the α-IGDSs and β-IGDSs.
Because the three clusters of IGDSs are orthogonal to each other,
the generated lattice pattern on each γ -IGDS is assured of self-
supporting. In the rest of the paper, the symbols ‘‘γ -’’, ‘‘α-’’ and
‘‘β-’’, or the superscriptsγ , α and β will be used to differentiate
similar elements regarding the three GDFs.

Finally, to cater to the collision-free requirement and also to
improve the printing efficiency, we propose a printing sequence
optimization method that aims at effectively reducing the air-
move length of the nozzle while upholding the collision-free
constraint.

The rest of the paper is organized as follows. In Section 2,
the detailed algorithm of curved layer slicing and lattice infill
structure generation is presented. Then, Section 3 gives the details
of the printing sequence optimization method and the printing
path planning method for the lattice infill patterns. In Section 4,
to validate the proposed methodology, we report the results of
both computer simulation and physical printing experiments on
several representative freeform parts. Finally, in Section 5, we
conclude the paper and offer some discussions.

2. Geodesic distance field-based slicing and infill generation

In this section, we present our GDF-based algorithms for
curved layer slicing and generating a self-supporting lattice infill
structure. Specifically, in Section 2.1, the details of computing
the three mutually orthogonal 3D GDFs on a tetrahedral mesh
are given. Then, in Section 2.2, the algorithms of curved layer
slicing and generation of a lattice infill pattern in each layer are
presented. Finally, in Section 2.3, the algorithm of the generation
of a skeleton tree of the connected lattice infill patterns is pro-
posed, which will facilitate the printing sequence optimization to
be presented in Section 3.
3

2.1. Generation of the three mutually orthogonal geodesic distance
fields

We assume that the given freeform model is represented by
a tetrahedral mesh M (V, E, F, T ), where V, E, F and T are the
collections of vertices, edges, faces, and tetrahedrons respectively.
First, a 3D GDF embedded on the tetrahedral mesh M is estab-
lished, where the field value at any vertex is its geodesic distance
to the specified bottom of the model, and this GDF is named as
γ -GDF (see Fig. 1(a)). We apply the Crane’s heat method on the
tetrahedral mesh to calculate γ -GDF by setting the bottom as
the heat source, i.e. the boundary condition for solving the heat
diffusion equation. In this paper, the bottom of the model where
the γ -GDF begins is specified by the user, which can be either a
surface or a point, though in most cases it is a flat base. Different
bottom surfaces will generate different curved iso-surfaces.

First, to solve the heat diffusion equation u̇ = ∆u on the
tetrahedral mesh, it is rewritten in a discrete form as(
I − tV−1Lc

)
ut = u0 (1)

where I is the identity matrix, u0 is the initial temperature field
vector, ut is the temperature field vector at moment t, V ∈ Rn×n

is a diagonal matrix containing the vertex volumes, and Lc ∈

Rn×n is the Laplacian matrix. The detailed values of matrix Lc
can be found in [34]. For the initial temperature field vector u0,
the temperatures at the bottom vertices are set as 1, while the
temperatures at other vertices are set as 0. The appropriate time
step t can be set as t = h2, where h is the average length of edges
[34]. Then, the temperature field ut at moment t can be calculated
by solving Eq. (1).

For the kth tetrahedron Tk, the temperature scalar field inside
its volume is defined as a piecewise linear function uk (x) =∑4

i=1 ϕik (x) uik, with ϕik being the piecewise linear basis function
that is valued 1 at vertex vi and 0 at all other vertices, and uik be-
ing the temperature value at vertex vi. The discrete temperature
gradient inside the tetrahedron can then be expressed as

∇uk =

4∑
i=1

uik∇ϕik (2)

It should be noted that ∇ϕik is simply the vector orthogonal
to face fik and opposite to vertex vi in tetrahedron Tk, pointing
towards vertex vi and with a magnitude of |∇ϕik| =

area(fik)
3|Tk|

[38],
where |T | denotes the volume of tetrahedron T .
k k
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The gradient vector field gγ

k of γ -GDF can be obtained by
normalizing ∇uk, i.e., g

γ

k = ∇uk/|∇uk|. In order to generate the
ther two vector fields gα

k and gβ

k which are orthogonal to gγ

k ,
reference vector r is introduced, which can usually be set as
=

(
1 0 0

)
. Then, gα

k and gβ

k can be calculated by⎧⎪⎨⎪⎩
gα
k =

r × gγ

k⏐⏐r × gγ

k

⏐⏐
gβ

k = gα
k × gγ

k

(3)

wherein the vectors gγ

k , g
α
k and gβ

k are all mutually orthogonal
with each other. The integrated divergence of the gradient field
associated with vertex vi can then be written as

(Divg) (vi) =

∑
Tk∈N(i)

∇ϕik · g |Tk| (4)

where N(i) is the set of vertices immediately adjacent to vertex
vi. Finally, the three GDFs, i.e., the γ -GDF φγ , the α-GDF φα , and
he β-GDF φβ for all the vertices can be obtained by solving the
following discrete Poisson equation

Lcφ = b (5)

where b is the divergence field vector of the gradient field.

2.2. Curved-layer slicing and lattice infill structure generation

Once the three orthogonal GDFs embedded on the tetrahe-
dral mesh M (V, E, F, T ) are obtained, the curved layers and
the lattice infill pattern in each layer can be constructed. The
γ -GDF is used to slice the whole part, namely, the curved layers
are generated by interpolating a number of γ -IGDSs, and each
layer is sandwiched between two adjacent γ -IGDSs. Let Ψ γ

=

φ
γ

1 , φ
γ

2 , . . . , φ
γ

i , . . .
}
be the set of sampling geodesic distances

for γ -GDF. For each φ
γ

i , a γ -IGDS Sγ

i can be defined. Similarly,
let Ψ α

=
{
φα
1 , φα

2 , . . . , φα
j , . . .

}
and Ψ β

=

{
φ

β

1 , φ
β

2 , . . . , φ
β

j , . . .

}
be the sets of sampling geodesic distances for the α-GDF and
β-GDF respectively, and the corresponding α-IGDSs and β-IGDSs
can also be interpolated. The lattice infill pattern in Sγ

i can be
formed by the intersection lines (i.e., the α-isolines) between
Sγ

i and the α-IGDSs, as well as the intersection lines (i.e., the
β-isolines) between Sγ

i and the β-IGDSs. Because the γ -, α-, and
β-IGDSs are all mutually orthogonal to each other, the generated
lattice infill pattern in Sγ

i is assured of self-supporting if the
nozzle orientation is aligned with the normal direction of Sγ

i .
Fig. 2 illustrates a lattice infill pattern Gi (Vi, Ei) at S

γ

i , which is
an undirected graph whose vertex set Vi contains the intersec-
tion vertices between the isolines and faces of the tetrahedral
mesh, the intersection vertices between the α-isolines and the
β-isolines, and the interpolation vertices in terms of φ

γ

i at the
mesh boundary, and the edge set Ei is a collection of edges
between the vertices.

Algorithm 1 shows the pseudocodes for the generation of
Gi (Vi, Ei). Specifically, Steps 1–12 find all the intersection vertices
between the mesh faces and the α-isolines, wherein a function
called GenGxVertex(Fk, φ

γ

i , φα
j , &V α) is used to judge whether

there exists an intersection vertex V α between the triangle face Fk
and an α-isoline in terms of φα

j — it returns true if an intersection
vertex is found and false otherwise. Fig. 3 illustrates the inter-
section vertex between an α-isoline in terms of φα

j and a face of
the tetrahedral mesh. Because the α-isolines are on Sγ

i which has
a γ -geodesic distance of φ

γ

i , there must exist two interpolation
vertices in terms of φ

γ

i at the two edges of the triangle face
respectively; assuming these two vertices are P and Q at edge
4

AB and AC respectively (see Fig. 3), the following condition must
be true:⎧⎨⎩

(
φ

γ
a − φ

γ

i

) (
φ

γ

b − φ
γ

i

)
< 0(

φ
γ
a − φ

γ

i

) (
φ

γ
c − φ

γ

i

)
< 0

(6)

where φ
γ
a , φ

γ

b and φ
γ
c are γ -geodesic distances at vertex A, B and

C respectively. Then, the coordinates of vertex P and Q, i.e., vP
and vQ , as well as the corresponding α-geodesic distances can be
calculated by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vP =
(⏐⏐φγ

a − φ
γ

i

⏐⏐ vB +
⏐⏐φγ

b − φ
γ

i

⏐⏐ vA
)
/
⏐⏐φγ

a − φ
γ

b

⏐⏐
vQ =

(⏐⏐φγ
a − φ

γ

i

⏐⏐ vC +
⏐⏐φγ

c − φ
γ

i

⏐⏐ vA
)
/
⏐⏐φγ

a − φ
γ
c
⏐⏐

φα
p =

(⏐⏐φγ
a − φ

γ

i

⏐⏐φα
b +

⏐⏐φγ

b − φ
γ

i

⏐⏐φα
a

)
/
⏐⏐φγ

a − φ
γ

b

⏐⏐
φα
q =

(⏐⏐φγ
a − φ

γ

i

⏐⏐φα
c +

⏐⏐φγ
c − φ

γ

i

⏐⏐φα
a

)
/
⏐⏐φγ

a − φ
γ
c
⏐⏐

(7)

where vA, vB and vC are the coordinates of vertex A, B and C
respectively, and φα

a , φα
b and φα

c are the α-geodesic distances at
vertex A, B and C respectively. The intersection vertex between
the triangle face and the α-isoline in terms of φα

j must be on edge
PQ, and the following condition holds:(
φα
p − φα

j

) (
φα
q − φα

j

)
< 0 (8)

Finally, the coordinate vN of the intersection vertex N can be
calculated by

vN =
(⏐⏐φα

p − φα
j

⏐⏐ vQ +
⏐⏐φα

q − φα
j

⏐⏐ vP
)
/
⏐⏐φα

p − φa
q

⏐⏐ (9)

Function GenGxVertex(Fk, φ
γ

i , φα
j , &V

α) first uses Eqs. (6) and
(8) to judge whether there exists an intersection vertex at the tri-
angle face Fk, and then, if it exists, uses Eqs. (7) and (9) to calculate
the coordinate of the intersection vertex V α . After the calcula-
tion of all the intersection vertices on the α-isoline in terms of
φα
j , the corresponding edges are constructed by traversing all

the tetrahedrons, i.e., if two faces of a tetrahedron contain an
α-vertex respectively, an α-edge is defined to connect these two
α-vertices (as stipulated in Steps 7–11 in Algorithm 1).

Similarly, Steps 13–24 are used to find all the intersection
vertices between the mesh faces and the β-isolines, wherein the
function GenGyVertex(Fk, φ

γ

i , φ
β

j , &V
β ) is used to judge whether

there exists an intersection vertex V β between the triangle face Fk
and the β-isoline in terms of φ

β

j – it returns true if an intersection
vertex is found and false otherwise, and the corresponding
β-edges are constructed by traversing all the tetrahedrons.

After the generation of all the α-edges and the β-edges, the
intersection vertices between them can be obtained by travers-
ing all the tetrahedrons. As shown in Fig. 4, a tetrahedron may
contain several α-edges and β-edges, and some of them may
intersect with each other. Take as an example the intersection
vertex P between the α-edge AB and the β-edge CD shown in
Fig. 4, the following condition must be held:⎧⎨⎩

(
φα
a − φα

cd

) (
φα
b − φα

cd

)
< 0(

φ
β
c − φ

β

ab

)(
φ

β

d − φ
β

ab

)
< 0

(10)

where φα
a , φα

b and φα
cd are the α-geodesic distances of node A,

node B, and the α-edge CD respectively, while φ
β
c , φ

β

d and φ
β

ab are
the β-geodesic distances of node C, node D, and the β-edge AB
respectively. Then the coordinate vP of the intersection vertex P
can be calculated by:

vP =
(⏐⏐φα

cd − φα
a

⏐⏐ vB +
⏐⏐φα

cd − φα
b

⏐⏐ vA
)
/
⏐⏐φα

a − φa
b

⏐⏐
or. v =

(⏐⏐⏐φβ
− φ

β
⏐⏐⏐ v +

⏐⏐⏐φβ
− φ

β
⏐⏐⏐ v )

/

⏐⏐⏐φβ
− φ

β
⏐⏐⏐ (11)
P ab d C ab c D c d
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Fig. 2. Illustration of the lattice infill pattern Gi (Ni, Ei) at Sγ

i .

Fig. 3. Illustration of the intersection vertex between an α -isoline of φα
j and a

face of the tetrahedral mesh.

where vA, vB, vC , and vD are the coordinates of vertex A, B, C,
nd D, respectively. Inside the tetrahedron Tk, all the possible
ntersection points between the α-edges and the β-edges should
e first calculated according to Eqs. (10) and (11). Then, the
orresponding edges will be segmented by these intersection
ertices, and new edges should be defined according to these
ntersection vertices. The steps in Algorithm 1 from the 25th row
o the 29th are used to find the intersection vertices between the
-isolines and the β-isolines by traversing all the tetrahedrons,
here function GenGxyVertices(Tk, &VL) is used to calculate the

ntersection vertices VL in the tetrahedron Tk (it returns true if an
ntersection vertex is found, and false otherwise).

In Algorithm 1, the steps from the 30th to the 40th row are
sed to calculate the interpolation vertices in terms of φ

γ

i at
the boundary of the tetrahedral mesh, as well as to define the
corresponding boundary edges for Gi (Ni, Ei). The interpolation
ertices can be obtained by traversing all the boundary edges.
pecifically, function GenBoundVertex(Ek, &V ) is used to judge
hether there is an interpolation vertex V in terms of φ

γ

i at the
oundary edge Ek, which returns true if an interpolation vertex is
ound, and false otherwise. Take the interpolation vertex A at the
boundary edge MN shown in Fig. 5 as an example, the following
condition must be satisfied:(
φγ

− φ
γ ) (

φγ
− φ

γ )
< 0 (12)
m i n i

5

Fig. 4. Illustration of the intersection vertices between the α-edges and β-edges
inside a tetrahedron.

Fig. 5. Illustration of the interpolation points of φ
γ

i at the boundary edges.

where φ
γ
m and φ

γ
n are the γ -geodesic distances at vertex M and

N respectively, and the coordinate vA of the interpolation vertex
A can be calculated by

vA =
(⏐⏐φγ

m − φ
γ

i

⏐⏐ vN +
⏐⏐φγ

n − φ
γ

i

⏐⏐ vM
)
/
⏐⏐φα

m − φa
n

⏐⏐ (13)

where vM and vN are the coordinates of vertex M and N re-
spectively. After the calculation of all the boundary vertices, the
corresponding boundary edges can also be established by travers-
ing all the boundary faces. Take the boundary face MNL shown
in Fig. 5 as an example. Vertex A and B are the interpolation
vertices in terms of φ

γ

i at edge MN and ML respectively, with
which the edge AB can be defined. However, if there are some
intersection vertices between face MNL and the α-edges or the
β-edges, such as point C and E shown in Fig. 5, edge AB will be
broken by these intersection vertices and new edges (i.e., edge AE,
EC and CB) should be defined between vertex A and B. The above
procedure to define the boundary edges in Gi (Ni, Ei) is realized
by the steps in the 35th to the 40th row in Algorithm 1, where
function GenBoundEdges(F , &EL) is used to find all the boundary
k
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Fig. 6. Generation of lattice infill structures for the Y model: (a) tetrahedral mesh of the model; (b) the generated curved layers; (c) lattice infill structures from the
1st to the 24th layer; (d) lattice infill pattern in the 24th layer.
edges at face Fk. Finally, all the edges inside the tetrahedrons are
saved in the edge list Ei of Gi (Vi, Ei) (i.e., by the steps in the 41st
to the 43rd row in Algorithm 1).

Take the Y model shown in Fig. 6(a) as an example. The
tetrahedral model contains 4014 vertices and 17260 tetrahe-
drons. The vertices at the bottom are set as the heat source to
calculate the γ -GDF, as well as the α-GDF and the β-GDF. The
maximum γ -geodesic distance is 44.29 mm, and the whole part
is sliced into 44 layers with the γ -geodesic interval set to be
1 mm (Ψ γ

= {1, 2, 3 . . . 44}). At each layer, the lattice infill
pattern is generated by Algorithm 1 (the maximum α-geodesic
distance and β-geodesic distance are 24.17 mm and 10.11 mm
respectively, and the geodesic intervals for these two fields are
all set as 2 mm, i.e., Ψ α

= {2, 4, 6 . . . 24}, Ψ β
= {2, 4, 6 . . . 10}).

The generated lattice infill structures are shown in Fig. 6(b-c), and
Fig. 6(d) shows the lattice infill pattern at the 24th layer. It can be
seen that the lattice infill pattern in each layer is self-supporting
because both the α-GDF and the β-GDF are orthogonal to the
γ -GDF.

Referring to Fig. 7, the overhang angle θ at the part boundary
is defined as the angle between the nozzle orientation and the
normal direction n of the boundary surface, which measures
the degree of danger of material falling. When angle θ is larger
than a threshold (e.g., 135◦), external support structure will be
required in order to prevent the falling of material. Fig. 8(a) and
(b) show the overhang angles of the Y model under the traditional
2.5-axis planar slicing configuration and our multi-axis GDF based
curved-layer slicing method, respectively. As clearly seen, under
our method, by aligning the nozzle orientation with the gradient
direction of γ -GDF, angle θ is kept at or near 90◦, thus avoiding
the need of extra support.
6

2.3. The skeleton tree of the connected lattice infill patterns

The generated lattice infill pattern in each layer resembles
an undirected graph that may contain several connected sub-
graphs, which can be identified by using the DFS (depth first
search) algorithm. For all the connected sub-graphs, we define
a tree data structure simply called a skeleton tree that identifies
the topological relationship between them. As illustrated in Fig. 9,
on the skeleton tree, each node represents a connected sub-
graph, and every pair of adjacent sub-graphs are corresponded
by an edge between the two representative nodes on the tree.
For any node a on the skeleton tree, if node b is connected to
a by an edge on the tree, we call b an upper-node of a if b’s
γ -geodesic distance is larger than a’s, and a lower-node oth-
erwise. For example, on the tree in Fig. 9, node G25,1 has two
upper-nodes, i.e., G26,1 and G26,2, and only one lower-node, G24,1.
The skeleton tree is constructed from the bottom towards the
top, and the corresponding algorithm is given in Algorithm 1,
wherein function AreTwoGraphsAdjacent (Gi,j, Gi+1,k) is used to
judge whether any two nodes Gi,j and Gi+1,k are adjacent to each
other (i.e., to be connected by an edge). Referring to Fig. 10, to
judge whether Gi,j and Gi+1,k are adjacent, we can first randomly
select an edge on the triangular mesh (the boundary of the part)
that intersects the boundary of Gi,j; then, from this edge, we
trace out a geodesically steepest ascending path on the triangular
mesh. Similarly, we can also trace out a geodesically steepest
descending path from Gi+1,k. The two nodes are adjacent to each
other if at least one of the two paths go through both.

3. Printing process planning

We have now decomposed the whole part into a number of
curved layers according to the γ -IGDS and constructed the lattice
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Fig. 7. The overhang angle: (a) traditional 2.5-axis planar slicing; (b) multi-axis curved layer slicing.
Fig. 8. Overhang angle of the Y model: (a) traditional 2.5-axis slicing method; (b) our multi-axis curved layer slicing method.
nfill pattern in each layer, as well as a skeleton tree that identi-
ies the topological relationship of the connected sub-graphs of
he lattice infill patterns. In this section, we will first present
ur printing sequence generation method (Section 3.1) and then
escribe how the printing paths are planned (Section 3.2).
7

3.1. Printing sequence generation

The strict increasing geodesic order of the skeleton tree has
already defined a partial order of printing — any node must
be printed before its upper-node(s). However, since printing is
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a time-continuous process, we must convert this partial order-
ing into a total ordering of traversal of the nodes, i.e., a single
sequence of nodes to print, called a printing sequence. Hereafter
we will interchangeably use the terms a ‘‘node’’ and a connected
sub-graph (of a layer). The following criterion must be satisfied
for any valid printing sequence:
8

Criterion 1. a sub-graph can only be printed if its lower sub-
graph(s) have already been printed.

Generally, there are two traversal strategies of a skeleton
tree, i.e. the layer priority traversal (LPT ) and the depth priority
traversal (DPT ). Refer to Fig. 11, the LPT strategy traverses the
skeleton tree layer by layer from bottom-up, which tends to avoid
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Fig. 9. Generating the skeleton tree of the connected lattice infill patterns.

Fig. 10. Judge whether two sub-graphs are adjacent to each other.
9

the collision to the utmost, for that the sub-graphs of each layer
share the same γ -geodesic distance. On the other hand, the DPT
strategy traverses the skeleton tree along branches in priority,
which favours minimizing the air-movement of the nozzle. How-
ever, as shown in Fig. 12, under DPT, if a branch grows too deep,
it may cause collisions when printing other branches.

In order to reduce the air-move path length while ensuring
no collisions, we propose an optimization strategy which seeks a
compromise between LPT and DPT. First of all, the collision check
between the nozzle and the sub-graphs must be modelled. In
this paper, the shape of the nozzle is simplified by its bounding
cone, as shown in Fig. 13(a). Admittedly, this simplification is too
conservative; however, because collision check is not the main
topic of this paper, we opt for this simplification to implement
our algorithm. When the nozzle cone sweeps along the boundary
curve of a sub-graph with its orientation coincident with the
surface normal direction n, the envelope of motion will be a ring-
like ruled surface S (u, v) = P (u) + vk (u), where P (u) is an
rbitrary point on the boundary curve of the sub-graph, and the
nit vector k (u) of the generator can be obtained by rotating the
ormal vector n at P (u) around the tangent vector τ (u) of the
oundary curve with the nozzle angle α, as shown in Fig. 13 (a).
pecifically, to construct the triangular mesh of the ruled surface,
e first place a few sample points on the boundary curve of the
ub-graph, then calculate their generators, and finally connect the
enerators as triangles. The upper and lower holes of the ring-
ike ruled surface should be filled to approximate the envelope
olume of the cone over the entire sub-graph. In this paper, we
dopt the advancing front mesh (AFM) technique [39] to fill the
oles, which is robust and simple. To determine whether there is
potential collision when printing a sub-graph, we only need to
heck whether there are intersections between other sub-graphs
nd this envelope volume. For each sub-graph, we can calculate
ll the potential collision sub-graphs (PCG) (i.e., other sub-graphs
hat intersect the envelope volume of this sub-graph). Take the
art shown in Fig. 13(b) as an example, the potential collision
ub-graphs for sub-graph G4,1 will be G5,1, G6,1, G7,1, G7,2 and
8,2. The detailed procedures for calculating the PCGs of each sub-
raph are given in Algorithm 3, where function CollisionCheck (Gi,
j) is used to judge whether there are intersections between sub-
raph Gj and the envelope volume of sub-graph Gi — it returns
rue if an intersection is identified and false otherwise.

Facilitated by the PCGs of each sub-graph, we propose a greedy
raversal (GT ) algorithm that can generate a collision-free print-
ng sequence with a shorter air-move path length than that of
he layer priority traversal. Besides Criterion 1, another criterion
ust be satisfied during the traversal:
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Fig. 11. Traversal strategies of a skeleton tree: (a) layer priority traversal; (b) depth priority traversal.
t

Fig. 12. Illustration of possible collisions during a depth priority traversal.

riterion 2. a sub-graph can only be printed if the PCGs of all
he unprinted sub-graphs exclude this sub-graph.

Specifically, in Algorithm 4 below, function UpdateNodeCadi-
ates (ST ) is used to find all the printable candidate nodes which
10
satisfy both Criterions 1 and 2 according to the current skeleton
tree ST. And function SelectANode (NC, Nc) is used to update the
current node Nc from the candidate node list NC. It will select
he upper-node(s) of Nc in priority. However, if the upper-node(s)
are not included in NC, the node which is nearest to Nc will be
selected. To summarize, we traverse the skeleton tree along the
branches in priority unless a potential collision is encountered.
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Fig. 13. Illustration of collision check between the nozzle and a sub-graph: (a) ring-like surface generated by sweeping the nozzle along the boundary of the
sub-graph; (b) envelope volume of the nozzle motion.
Fig. 14. Printing path for a lattice infill pattern: (a) lattice infill pattern; (b) trimmed pattern that contains an Eulerian tour; (c) printing path for the lattice infill
attern; (d) generation of the support perimeter.
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.2. Printing path planning for lattice infill structures

For any node (sub-graph) in the skeleton tree, a traversal
rinting path needs to be determined. As illustrated in Fig. 14(a),
or a connected sub-graph G (V , E), the number of intersection
ertices (v1, v2, . . . , vk, . . .) between the boundary curve and the
solines is always even and the degrees of these vertices are all
, while the degrees of other vertices are either 2 or 4. To avoid
xcessive tool retractions, the sub-graph can be transformed into
n Eulerian graph by properly trimming the boundary curve. As
hown in Fig. 14(b), the boundary edges between the intersection
ertex vk and vk+1 (k = 2, 4, 6, . . . ) are deleted, so that the
egrees of all the vertices become even and the new graph must
ontain an Eulerian tour. In this paper, the well-known Fleury’s
11
lgorithm is used to find an Eulerian tour in a connected graph.
owever, to avoid crossovers on the printing path, the printing
ath will turn in priority at any vertex whenever its degree is 4,
.e., at the intersection vertices between the α-isolines and the
β-isolines, as shown in Fig. 15(b). On the other hand, if we want
to reduce sharp turns, the printing path should move forward in
priority at any intersection vertices, as shown in Fig. 15(a). To
provide supports at places where the boundary edges are deleted,
a support perimeter around the trimmed graph is added, which
though is jagged at these places, as shown in Fig. 14(c) and (d).
The offset distance between the boundary curve and the support
perimeter is set to be the path width w, and the tooth length l can
be adjusted to a proper value, e.g., l = 2w. The nozzle orientation

at each vertex is set to be coincident with the layer surface
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Fig. 15. Fleury’s algorithm.
Fig. 16. Illustration of the printing parameters.
ormal vector of the corresponding γ -IGDS. Because IGDSs are
lways perpendicular to the geodesics, the gradient vector of the
eodesic field at the vertex can be directly used as the nozzle
rientation.
Due to the nature of curved layer slicing, the layer thickness
will no longer be a constant along the printing path. Refer to
ig. 16, the intersection of the extruded filament is simplified
o be a rectangle of h×w, where w is the path width; then, the
following mass conservation equation should be satisfied during
the printing process:

πr2mfm = µwhfp (14)

here rm is the radius of the original filament, fm is the feed
ate of the filament, fp is the feed rate of the nozzle, and µ
is a correction coefficient which is smaller than 1 and can be
determined by experiments. The layer thickness hk at vertex vk
of the ith sub-graph Gi (Vi, Ei) can be calculated by finding the
shortest distance of this vertex to the previous (i-1)th sub-graph
Gi−1 (Vi−1, Ei−1):{
hk = FindShortestDistance (vk,Gi−1 (Vi−1, Ei−1))

ifhk ≥ λφi, hk = λφi
(15)

wherein function FindShortestDistance (vk,Gi−1 (Vi−1, Ei−1)) tra-
verses all the edges of Gi−1 (Vi−1, Ei−1) to find the shortest dis-
tance. To avoid a too large layer thickness, hk should not exceed
a threshold λφi, where φi is the γ -geodesic interval between
Gi (Vi, Ei) and Gi−1 (Vi−1, Ei−1), and λ is a coefficient which is
larger than 1 (1.5 in our tests). Additionally, at the first layer, h
k

12
can be set as the z-coordinate zk of vertex vk. Although the over-
hang angle at the boundary of the part is considerably reduced,
the layer thickness is nonuniform due to the intrinsic nonuniform
distribution of geodesics. While every two adjacent iso-surfaces
share a constant geodesic distance, the geodesic distance itself
defined in a 3D manifold is not equal to the straight-line distance
defined in the Euclidean space. As the layer thickness at a point on
the iso-surface is defined to be the shortest straight-line distance,
from the perspective of Euclidean space, it varies at different
places. For the Y model, Fig. 17(a) shows the distribution of
layer thickness deviation e in different layers when the geodesic
distance interval φi is 1 mm (e = (hk- φi) /φi), with a maximum
percentage deviation of 35%, and Fig. 17(b) shows the statistical
results. According to our experiences, the geodesic slicing step
can be set as d = 0.6D, where D is the diameter of the nozzle. A
too large layer thickness deviation may affect the surface quality
of the printed part — the surface finishing will be poor at places
where the layer thickness is large, because the filament extruded
from the nozzle at these places will also be thicker accordingly.
In our future study, we will develop an adaptive slicing algorithm
which can maintain a high surface quality in different regions of
the part.

To avoid possible collisions when the nozzle moves from one
connected sub-graph to another, in this paper, we make use of
the safe box method (as reported in our recent works [40,41]). As
schematically shown in Fig. 18, under the safe box paradigm, the
nozzle first air-moves from the current sub-graph to one of the
safe planes (which are outside the current in-process workpiece),
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Fig. 17. Illustration of layer thickness of the lattice infill patterns: (a) distribution of layer thickness deviation at different layers; (b) statistical chart of layer thickness
deviation at different layers.
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Fig. 18. Safe box of the in-process workpiece and planning of the collision-free
ir-move of the nozzle.

hen moves on this safe plane, crosses the obstacle (i.e., the
n-process workpiece), and finally approaches another sub-graph.

. Experiments and discussion

We have implemented the proposed methodology of automat-
cally generating the lattice infill structures and printing path for
ulti-axis support-free printing of an arbitrary freeform part in
++ and run the computer program on a laptop with an Intel
7 CPU. In addition, for the purpose of physical validation, as
hown in Fig. 19, we have built a simple multi-axis FDM printer,
13
Fig. 19. Homebuilt multi-axis robot printing system.

hich is composed of a 6DOF robot arm (UR5) and a three-axis
ilament feed system. The robot enables the in-process work-
iece to realize any desirable posture with respect to the nozzle,
hile at the same time the robot and the filament feed rates
re synchronously controlled to ensure that Eq. (14) is always
atisfied during the printing process. Five freeform parts with
omplicated structures such as with overhangs and of non-zero
enus numbers were chosen for the test and were also physically
rinted. In this section we report the experimental results of both
omputer simulation and physical printing, and together with our
iscussion.
Fig. 20. Five freeform parts to print: (a) Y model; (b) spiral model; (c) bunny; (d) kitten; (e) propeller.
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Fig. 21. Multi-axis support-free printing with lattice infill structures: (a) Y model; (b) spiral model; (c) bunny; (d) kitten; (e) propeller.

14
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Fig. 22. Simulation of the printing processes: (a) Y model; (b) spiral model; (c) bunny; (d) kitten; (e) propeller.
.1. Printing of the freeform parts

Fig. 20 depicts the tetrahedral models of the five freeform
arts that are printed by using the proposed lattice infilling
ethod, i.e., the Y-model, the spiral model, the bunny, the kitten,
nd the propeller. Table 1 lists the printing parameters of the five
arts. The γ -geodesic distance interval for the curved layer slicing
15
is set to be 0.6 mm. The lattice width for the first four parts are
set to be 4 mm, 6 mm, 6 mm, and 6 mm respectively, while the
propeller is printed in two steps — in the first step, the cylinder is
printed with the lattice width set to be 8 mm, and in the second
step the three blades are printed with the lattice width set to
be 3 mm. The printing sequences of the curved layers of all the
five parts are determined according to DPT. Figs. 21 and 22 (the
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Fig. 23. Cross-sections of the printed parts: (a) Y model; (b) bunny; (c) kitten.
Table 1
Data of printing experiments of the five parts.
Part Number of

tetrahedrons
Time for printing
path generation (s)

Path length
(mm)

Actual printing
time (min)

Number of
layers

Width of the
lattice (mm)

Y 17148 33 49765 130 145 4
Spiral 31152 74 71139 171 401 6
Bunny 66467 203 194260 400 206 6
Kitten 58146 120 88338 232 161 6
Propeller 83314 145 125425 327 Cylinder: 183

Blade: 83
Cylinder: 8
Blade: 3
m
g

t
t
i

colour in the figure indicates the printing sequence of the curved
layers) show the actual and simulated printing processes of the
five parts, respectively, and Fig. 23 shows some cross-sections of
three printed parts. All the five freeform parts are successfully
printed without any supports, for both the part boundary surface
and the interior infills. Due to the intrinsic nature of geodesic
distance field, the overhang angle at the part boundary surface is
considerably reduced, making it possible to print a part without
any exterior supports. As already described, the lattice infill struc-
tures are formed by the intersections between the three clusters
of orthogonal IGDSs (i.e., the γ - IGDSs, the α-IGDSs and the
β-IGDSs.), which guarantees that the generated infill structures
are self-supporting.

As revealed by the photos in Fig. 21, the surface finish quality
of the printed parts is quite low, to which we offer the following
explanation. The multi-axis printing system used in our experi-
ments is a homemade test rig which is crude and not very stable
— the calibration/positioning/motion error, mechanism vibration,
and other factors all affect the final printing quality. As a result,
the surface finish quality by this homemade printer is much lower
than it should be (i.e., the theoretical finish quality as measured
by the theoretical cusp-height). It is not an overstatement that
if the printing paths generated by our method were executed
on a high-end commercial multi-axis FDM printer, the surface
finish quality would be significantly higher than the one shown
in Fig. 21. The main purpose of the physical printing experiments
using our homemade printer is to validate the correctness of
16
our method in eliminating the need of support and collision
avoidance. As a benchmarking comparison, Fig. 24 shows the
simulated printing results of the Y model, bunny and kitten using
the conventional parallel slicing printing paths (generated by the
commercial Ultimaker Cura), where, although the geometry of
lattice infill (as output from Ultimaker Cura) is different from
ours, the density and width of lattice infill are set similar to
ours. As seen in the figure, a large amount of support is required.
In addition, in terms of the total printing path length, they are
respectively 51284 mm, 228312 mm and 107332 mm for the
Y model, bunny and kitten, which are much longer than ours as
given in Table 1.

In terms of the computational cost, as our volume decomposi-
tion method is a combination of several computational processes,
Table 2 lists the time complexities of these processes and the
actual amounts of running time of the first four tests. The calcula-
tion of the geodesic distance field involves solving a linear system,
so the time complexity is only O(n), where n is the number of
esh vertices. The time complexity of the lattice infill structures’
eneration is O(n*m), where n andm are respectively the numbers

of sliced layers and mesh vertices, as the time complexity of
Algorithm 1 is O(m), and Algorithm 1 will be executed n times
o generate the lattice infill for each layer. After the trimming of
he lattice infill in each layer, the well-known Fleury’s algorithm
s used to find an Eulerian tour, whose time complexity is O(n2),
where n is the number of vertices in the sub-graph. The time
complexity of layer thickness calculation (Eq. (15)) is O(n*m),
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Table 2
Time complexities of the algorithms and the running time of the three tests.
Process Algorithm Time complexity Running time (s)

Geodesic distance field generation Section 2.1 O(n) Y: 6; Spiral: 23; Bunny: 48; Kitten: 39
Lattice infill generation Algorithm 1 O(n*m) Y: 5; Spiral: 17; Bunny: 26; Kitten: 16
Finding a Eulerian tour Fleury’s algorithm O(n2) Y: 14; Spiral: 23; Bunny: 77; Kitten: 39
Layer thickness calculation Eq. (15) O(n*m) Y: 4; Spiral: 6; Bunny: 36; Kitten: 15
Fig. 24. Simulated printed parts based on parallel slicing (generated by commercial Ultimaker Cura): (a) the Y model; (b) bunny; (c) kitten.
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Table 3
Simulation results of the three traversal algorithms.
Algorithm Number of

retractions
Air-move path
length (mm)

Is collision-free
or not

Running
time (s)

LPT, NA: 75◦ 162 2382 Yes 0
DPT, NA: 75◦ 2 101 No 0
A3, NA: 75◦ 24 654 Yes 271
A3, NA: 60◦ 17 371 Yes 177
A3, NA: 45◦ 7 227 Yes 277
A3, NA: 30◦ 5 146 Yes 154
A3, NA: 15◦ 4 125 Yes 155
A3, NA: 1◦ 3 108 Yes 242

where n is the number of vertices of the current sub-graph, and
is the number of edges of the previous sub-graph. By using a

d-tree, the time complexity can be reduced to O(n*logm).
The lattice width (i.e., geodesic intervals for α-GDF and

β-GDF) can be set to be a constant, which will result in even
lattices (see in Figs. 21 and 25(a)). However, to print a part
with graded material properties (e.g., variable Young’s modulus),
the lattice width can also be adjusted adpatively, namely, by
increasing the density of infill lattices at certain places, as shown
in Fig. 25(b). For example, the ‘‘roof’’ region of a printed part
is typically the weakest, as the overhang angle θ there is very
small. Fig. 26 shows the distribution of the overhang angle θ of
the bunny model, where the blue regions identify the ‘‘roofs’’ that
are susceptible to material collapse and the density of the lattices
in these places should be increased.
 d

17
4.2. Printing sequence optimization

Next, we report the experimental results of three different
printing sequence traversal algorithms, i.e., the benchmarking LPT
nd DPT, and our Algorithm 4 (A4), on a tree-structured part with
hree branches. As shown in Fig. 27, the part is automatically
ecomposed into 151 infilling layers by our Algorithm 1 with the
eodesic distance interval set at 0.6 mm, and the total number
f the connected sub-graphs of the infilling layers is 311. Table 3
nd Fig. 28 show the simulation results of different cases. When
he nozzle angle (which is denoted by NA that measures the
ize of the nozzle) is 75◦, the printing sequence generated by
he LPT is collision-free, which requires 162 retractions and the
otal air-move path length is 2382 mm. However, the DPT fails to
enerate a collision-free printing sequence, although the number
f retractions (only 2) and the total air-move path length (only
01 mm) would be ideal. The proposed Algorithm 4 successfully
lans a collision-free printing sequence with fewer retractions
24) and a shorter path length (654 mm) as compared with those
f LPT. As expected, the number of nozzle retractions and the air-
ove path length are inversely related with the size of the nozzle

see Fig. 28). Because the calculation of PCGs for each sub-graph
nvolves collision check, the time complexity of A4 is the largest,
.e., O(k2*m), where k and m are the number of sub-graphs and
he average number of vertices of each sub-graph, respectively.
ig. 29 shows some snapshots of the actual printing processes of
he A4 and LPT printing paths when the nozzle angle is 45◦. (Note
hat we did not compare with the DPT path since it failed to print

ue to the unresolvable collisions.) The comparison results clearly



Y. Li, K. Tang, D. He et al. Computer-Aided Design 133 (2021) 102986

c
p
s
h

Fig. 25. Even and non-even lattices.
Fig. 26. Distribution of the angle between the surface normal vector and the printing orientation.
Fig. 27. A three-branch model and its IGDSs: (a) model; (b) IGDSs.
onfirm that, when compared to the LPT path, the filament drag
roblem is mitigated considerably by our A4 path owing to its
ignificantly reduced nozzle retractions, thus leading to a much
igher printing quality.
18
5. Conclusion

This paper is motivated by the need of an automatic infill
structure generation method for an arbitrary freeform solid part,
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Fig. 28. Printing sequences generated by A4 under different nozzle angles: (a) 75◦; (b) 60◦; (c) 45◦; (d) 30◦; (e) 15◦; (f) 1◦ .
hat will ensure that both the generated infills and the given part
oundary can be printed without any support under the con-
inuous multi-axis printing configuration. Towards this objective,
hree mutually orthogonal geodesic distance fields embedded in
he volume of the part are established. The iso-geodesic dis-
ance surfaces (IGDSs) of these three fields naturally form the
urved layers of the part and the lattice infill structure, which,
y aligning the nozzle orientation with the surface normal of
he curve layers, guarantee that the overhang angles at both
he part surface boundary and the infills are within the self-
upport range and thus eliminate the need of extra support. To
void excessive nozzle retractions when printing the infills, the
attice infill pattern in each layer is first trimmed to an Eulerian
raph and then a continuous printing path is constructed by using
leury’s algorithm. In addition, we present a printing sequence
ptimization algorithm for establishing a total ordering of the
onnected lattice infills which, while respecting the collision-free
equirement, tries to minimize the air-move path length of the
ozzle. The results of both computer simulation and physical
rinting experiments have given a positive confirmation of the
roposed methods.
Regarding the limitations and future research, the sub-graphs

f the generated infills by our method cannot always maintain
he convexity if the part has a complicated topology, which may
ause local collisions when the nozzle angle is large. It is con-
eivable that, even under the most conservative LPT, there can be
ases when the collision simply cannot be avoided on a skeleton

ree. One solution to this problem is using a slender nozzle to

19
reduce the potential of local collision. On the other hand, as there
are many ways to decompose a solid and generate curved slicing
layers (e.g., [17] and [18]), a solid that fails our 3D geodesics-
based curved-layer slicing and printing sequencing algorithm
might well be printable without collisions under other strategies
of slicing and printing sequencing. One plausible solution is that,
rather than given a base, we freely select a base (including both
its location and the size) on the boundary of the solid to define the
γ -geodesic distance field and the corresponding lattice infill pat-
terns so that their corresponding skeleton tree will be printable at
least under LPT. Alternatively, for a given solid we could combine
the proposed 3D geodesics-based volume decomposition with
other types of decomposition and come up with a different set of
curved slicing layers and their printing sequence that are better
in dealing with the collision. All these will be our future research
topics.
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Fig. 29. Actual printing processes when the nozzle angle is 45◦: (a) A4, the printing path length is 39946 mm, printing time is 150 min; (b) LPT, the printing path
ength is 42101 mm, printing time is 155 min.
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